Algorithms for Projection-Pursuit Robust Principal Component Analysis
نویسندگان
چکیده
منابع مشابه
Algorithms for projection-pursuit robust principal component analysis
Principal Component Analysis (PCA) is very sensitive in presence of outliers. One of the most appealing robust methods for principal component analysis uses the Projection-Pursuit principle. Here, one projects the data on a lower-dimensional space such that a robust measure of variance of the projected data will be maximized. The Projection-Pursuit based method for principal component analysis ...
متن کاملRobust Principal Component Analysis by Projection Pursuit
Different algorithms for principal component analysis (PCA) based on the idea of projection pursuit are proposed. We show how the algorithms are constructed, and compare the new algorithms with standard algorithms. With the R implementation pcaPP we demonstrate the usefulness at real data examples. Finally, it will be outlined how the algorithms can be used for robustifying other multivariate m...
متن کاملEfficient algorithms for robust and stable principal component pursuit problems
Abstract. The problem of recovering a low-rank matrix from a set of observations corrupted with gross sparse error is known as the robust principal component analysis (RPCA) and has many applications in computer vision, image processing and web data ranking. It has been shown that under certain conditions, the solution to the NP-hard RPCA problem can be obtained by solving a convex optimization...
متن کاملNonlinear Principal Component Analysis, Manifolds and Projection Pursuit
Auto-associative models have been introduced as a new tool for building nonlinear Principal component analysis (PCA) methods. Such models rely on successive approximations of a dataset by manifolds of increasing dimensions. In this chapter, we propose a precise theoretical comparison between PCA and autoassociative models. We also highlight the links between auto-associative models, projection ...
متن کاملPrincipal Component Projection Without Principal Component Analysis
We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2006
ISSN: 1556-5068
DOI: 10.2139/ssrn.968376